|
|
A241072
|
|
Valid groups of final digits a square number made entirely of the digits 6, 7 and 8 can have.
|
|
0
|
|
|
6, 76, 676, 776, 876, 6676, 7776, 7876, 8676, 67776, 67876, 68676, 76676, 77776, 87776, 87876, 88676, 667776, 667876, 668676, 676676, 677776, 687876, 688676, 767876, 768676, 776676, 787776, 787876, 788676, 867776, 867876, 868676, 876676, 877776, 887876, 888676
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
66 is not in this sequence because a square number cannot end in 66; a square ending in 6 must have 1, 3, 5, 7, or 9 as its next-to-last digit.
|
|
MATHEMATICA
|
eLim = 6; nn = 10^eLim; t = {}; s1 = Select[Range[nn]^2, Mod[#, 10] == 6 &]; Do[s2 = Select[s1, Complement[Union[IntegerDigits[Mod[#, 10^e]]], {6, 7, 8}] == {} &]; u = Union[Mod[s2, 10^e]]; t = Union[t, u], {e, 2, eLim}]; t (* T. D. Noe, Apr 15 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|