login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number k such that sopf(k)/digsum(k) = prime(n) where sopf(k) is the sum of the distinct primes dividing k and digsum(k) the sum of digits of k.
1

%I #6 Apr 16 2014 17:26:36

%S 42,104,130,10,212,1336,1630,1003,1556,3122,2455,5298,9105,13842,3241,

%T 5230,10020,8754,11671,10104,16305,13141,7628,12786,16201,2012,18007,

%U 10630,11965,12607,13945,14623,38234,24343,30823,24020,7846,17905,11348,12061,27517

%N Smallest number k such that sopf(k)/digsum(k) = prime(n) where sopf(k) is the sum of the distinct primes dividing k and digsum(k) the sum of digits of k.

%C a(n) is the smallest k such that A008472(k)/ A007953(k) = prime(n).

%H Michel Lagneau, <a href="/A241049/b241049.txt">Table of n, a(n) for n = 1..200</a>

%e a(7) = 1630 because A008472(1630)/ A007953(1630) = 170/10 = 17 = prime(7).

%t lst={};Do[k=1;While[Plus @@ First[ Transpose[ FactorInteger[k]]]/

%t Plus@@IntegerDigits[k]!=Prime[n],k++];AppendTo[lst,k],{n,1,42}];lst

%Y Cf. A008472, A007953.

%K nonn,base

%O 1,1

%A _Michel Lagneau_, Apr 15 2014