login
Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 9 for i<>j, or 0 if no such prime exists.
2

%I #17 Dec 10 2017 10:35:28

%S 19,199,1999,99991,199999,9999991,19999999,0,9199999999,99999199999,

%T 991999999999,9919999999999,99999999991999,919999999999999,

%U 9999999999999199,99919999999999999,0,9991999999999999999,99999199999999999999,0,9991999999999999999999

%N Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 9 for i<>j, or 0 if no such prime exists.

%C The corresponding indices of the decimal digit 1 are 1, 1, 1, 5, 1, 7, 1, 0, 2, 6, 3, 3, 11, 2, 14, 4, 0, 4, 6, 0, 4, ... (A241018).

%H Michel Lagneau, <a href="/A241021/b241021.txt">Table of n, a(n) for n = 2..150</a>

%p with(numtheory):nn:=80:T:=array(1..nn):

%p for n from 2 to nn do:

%p for i from 1 to n do:

%p T[i]:=9:

%p od:

%p ii:=0:

%p for j from 1 to n while(ii=0)do:

%p T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):

%p if type(s,prime)=true

%p then

%p ii:=1: printf(`%d, `,s):

%p else

%p T[j]:=9:

%p fi:

%p od:

%p if ii=0

%p then

%p printf(`%d, `,0):

%p else

%p fi:

%p od:

%t Table[SelectFirst[FromDigits/@Table[Insert[PadRight[{},k,9],1,n],{n,k+1}],PrimeQ],{k,30}]/.Missing["NotFound"]->0 (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 10 2017 *)

%Y Cf. A241018, A241019, A241020, A241022, A041027.

%K nonn,base

%O 2,1

%A _Michel Lagneau_, Apr 15 2014