Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jan 17 2020 05:25:15
%S 4,3,8,9,2,5,3,6,9,2,5,9,4,6,6,4,5,6,7,4,0,8,8,5,2,6,1,1,5,8,5,2,3,7,
%T 7,4,2,1,9,1,4,9,3,8,6,5,1,4,3,8,8,7,2,6,8,3,0,1,0,7,5,9,7,5,2,9,2,6,
%U 0,4,4,2,0,4,9,2,6,6,8,7,2,4,6,0,3,3,0,0,4,1,3,7,5,7,9,1,4,9,2,2
%N Decimal expansion of the breadth of the "caliper", the broadest worm of unit length.
%C A caliper consists of 2 circular arcs with 4 tangent segments, specifically configured (see link to Figure 8.3 from the book by Steven Finch).
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.4 Moser's Worm Constant, p. 493.
%H Jean-François Alcover, <a href="/A240969/a240969.gif">Figure 8.3 A caliper.</a>
%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 60.
%F See trig. formulas in Mathematica code.
%F Sec(phi), an algebraic number, is the positive root of 3x^6 + 36x^4 + 16x^2 - 64.
%e phi = 0.29004634452825946320905124629823276955932638591519522257237...
%e psi = 0.480931237564380337681715512959999015584157793267187574483...
%e beta = 0.43892536925946645674088526115852377421914938651438872683...
%t phi = ArcSin[1/6 + (4/3)*Sin[(1/3 )*ArcSin[17/64]]];
%t psi = ArcTan[(1/2)*Sec[phi]];
%t beta = (1/2)*(Pi/2 - phi - 2*psi + Tan[phi] + Tan[psi])^(-1);
%t RealDigits[beta, 10, 100] // First
%Y Cf. A227472.
%K nonn,cons
%O 0,1
%A _Jean-François Alcover_, Sep 04 2014