Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 06 2014 06:02:05
%S 1,3,20,234,3944,86400,2324160,74062800,2726970624,113893395840,
%T 5319595814400,274730601277440,15544557784673280,956232958853652480,
%U 63540675378122342400,4535620918350762240000,346127227962539155292160,28120835253815298895380480,2423309442415144546546483200
%N G.f.: Sum_{n>=0} n^n * x^n * (3 + 2*n*x)^n / ((1 + n*x)*(1 + 2*n*x))^(n+1).
%H Vincenzo Librandi, <a href="/A240957/b240957.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..n} (n-k)! * Stirling2(n, n-k) * binomial(n-k, k) * 3^(n-2*k) * 2^k.
%F a(n) ~ c * d^n * n! / sqrt(n), where d = 3*r^2/(2*r-1) + 2*(2*r-1)*r/(3*(1-r)) = 4.927267464017203368228591159442769988364645445182..., where r = 0.8093509687086163798199326301917112747442352555652682... is the root of the equation (r + 2*(1-2*r)^2/(9*(1-r))) * LambertW(-exp(-1/r)/r) = -1, and c = 0.546345652881951027770637598235474648132398514044679... . - _Vaclav Kotesovec_, Aug 05 2014
%e O.g.f.: A(x) = 1 + 3*x + 20*x^2 + 234*x^3 + 3944*x^4 + 86400*x^5 +...
%e where
%e A(x) = 1 + x*(3+2*x)/((1+x)*(1+2*x))^2 + 2^2*x^2*(3+4*x)^2/((1+2*x)*(1+4*x))^3 + 3^3*x^3*(3+6*x)^3/((1+3*x)*(1+6*x))^4 + 4^4*x^4*(3+8*x)^4/((1+4*x)*(1+8*x))^5 + 5^5*x^5*(3+10*x)^5/((1+5*x)*(1+10*x))^6 +...
%t Table[Sum[(n-k)! * StirlingS2[n, n-k] * Binomial[n-k, k] * 3^(n-2*k) * 2^k, {k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Aug 05 2014 *)
%o (PARI) {a(n)=local(A=1); A=sum(m=0, n, m^m*x^m*(3+2*m*x)^m/((1 + m*x)*(1+2*m*x) +x*O(x^n))^(m+1)); polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) /* From formula for a(n): */
%o {Stirling2(n, k)=sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!}
%o {a(n)=sum(k=0, n\2, (n-k)!*Stirling2(n, n-k)*binomial(n-k, k)*3^(n-2*k)*2^k)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A240956, A240958, A240921.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 04 2014