%I #4 Apr 22 2014 22:16:49
%S 0,0,0,0,0,0,0,1,0,2,1,2,3,3,3,4,4,4,5,4,3,6,4,4,5,3,4,6,4,4,4,4,4,6,
%T 4,3,5,4,4,6,3,4,5,4,4,5,4,4,5,4,3,6,4,4,5,3,4,6,4,4,4,4,4,6,4,3,5,4,
%U 4,6,3,4,5,4,4,5,4,4,5,4,3
%N Number of partitions p of n into distinct parts such that max(p) = 5 + min(p).
%e a(12) counts these 3 partitions: 732, 651, 6321.
%t z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@Split@#] == 1 &];
%t Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *)
%t Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *)
%t Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *)
%t Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)
%Y Cf. A171182, A240871, A240872.
%K nonn,easy
%O 0,10
%A _Clark Kimberling_, Apr 15 2014
