Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 26 2024 06:40:32
%S 0,0,0,1,0,1,2,2,3,3,5,5,7,7,10,12,14,16,19,23,27,33,37,45,51,60,68,
%T 82,94,108,123,143,165,188,214,246,282,318,362,412,469,527,597,675,
%U 764,858,965,1086,1223,1367,1530,1717,1923,2144,2393,2674,2981,3315
%N Number of partitions of n into distinct parts of which the number of even parts is a part.
%F a(n) + A240869(n) = A000009(n) for n >= 0.
%e a(10) counts these 5 partitions: 82, 721, 631, 541, 4321.
%t z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *)
%t t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *)
%t t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *)
%t t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *)
%t t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *)
%t t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *)
%t t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *)
%Y Cf. A240863, A240864, A240865, A240866, A240867, A240868; for analogous sequences for unrestricted partitions, see A240573-A240579.
%K nonn,easy
%O 0,7
%A _Clark Kimberling_, Apr 14 2014