login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A240839
Both n and prime(n) are primes congruent to 3 (mod 10).
1
23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163, 1213, 1223, 1433, 1453, 1493, 1523, 1723, 1733, 1933, 1993, 2113, 2203, 2803, 2833, 2903, 3023, 3203, 3343, 3433, 3733, 3823, 3833, 4003, 4243, 4373, 4483, 4513, 4733, 4813, 4903, 4943, 4993, 5333, 5503, 5743, 6143, 6343, 6833, 7013
OFFSET
1,1
COMMENTS
Intersection of A030431 and A049508.
EXAMPLE
prime(23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163) = (83, 563, 1913, 3593, 6323, 6863, 7523, 7753, 8233, 9403).
MATHEMATICA
Intersection[A030431 = Select[Range[3, 1000003, 10], PrimeQ], PrimePi[A030431]] (* gives 469 terms for prime(n) up to 10^6 *)
Select[Prime[Range[50000]], Mod[#, 10]==Mod[Prime[#], 10]==3&] (* gives 3126 terms from the first 50000 primes *)(* Harvey P. Dale, Nov 29 2014 *)
PROG
(PARI) s=[]; forprime(n=2, 8000, if(n%10==3 && prime(n)%10==3, s=concat(s, n))); s \\ Colin Barker, Apr 16 2014
CROSSREFS
Sequence in context: A241746 A142192 A129918 * A138715 A096324 A044274
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 13 2014
STATUS
approved