login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Define a square array B(m,n) (m>=0, n>=0) by B(n, n) = A212196(n)/A181131(n), B(n, n+1) = -A212196(n)/A181131(n), B(m, n) = B(m, n-1) + B(m+1, n-1); a(n) = numerator of B(0,n).
0

%I #24 Jun 09 2014 17:49:03

%S 1,-1,-4,-1,-8,-1,-8,-3,-8,1,104,-41,-920,1767,20168,-8317,-2022392,

%T 869807,291391192,-129169263,-2759924456,250158593,146772324808,

%U -67632514765,-10164962436952

%N Define a square array B(m,n) (m>=0, n>=0) by B(n, n) = A212196(n)/A181131(n), B(n, n+1) = -A212196(n)/A181131(n), B(m, n) = B(m, n-1) + B(m+1, n-1); a(n) = numerator of B(0,n).

%C The array B(m,n) begins:

%C 1, -1, -4/3, -1, -8/15, -1/5, -8/105,...

%C -2, -1/3, 1/3, 7/15, 1/3, 13/105,...

%C 5/3, 2/3, 2/15, -2/15, -22/105,...

%C -1, -8/15, -4/15, -8/105,...

%C 7/15, 4/15, 4/21,...

%C -1/5, -8/105,...

%C 13/105,...

%C etc.

%C B(0, n) = 1, -1, -4/3, -1, -8/15, -1/5, -8/105, -3/35, -8/105, 1/35, 104/1155, ... = a(n)/b(n).

%C The main diagonal is A212196(n)/A181131(n).

%C The first upper diagonal is -A212196(n)/A181131(n).

%t max = 12; t[0] = Table[BernoulliB[n], {n, 0, 2*max}]; t[n_] := t[n] = Differences[t[0], n]; B1[1, 1] = -1/3; B1[n_, n_] := t[n][[n+1]]; B1[m_, n_] /; n == m+1 := B1[m, n] = -B1[m, m]; B1[m_?NonNegative, n_?NonNegative] := B1[m, n] = B1[m, n-1] + B1[m+1, n-1]; B1[_, _] = 0; Table[B1[0, n] // Numerator, {n, 0, 2*max}] (* _Jean-François Alcover_, Apr 14 2014 *)

%K sign,frac

%O 0,3

%A _Paul Curtz_, Apr 12 2014

%E More terms from _Jean-François Alcover_, Apr 14 2014

%E Edited by _N. J. A. Sloane_, May 21 2014