login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of divisors of n, cf. A027750.
12

%I #17 Jan 24 2022 09:20:48

%S 1,1,3,1,4,1,3,7,1,6,1,3,6,12,1,8,1,3,7,15,1,4,13,1,3,8,18,1,12,1,3,6,

%T 10,16,28,1,14,1,3,10,24,1,4,9,24,1,3,7,15,31,1,18,1,3,6,12,21,39,1,

%U 20,1,3,7,12,22,42,1,4,11,32,1,3,14,36,1,24,1

%N Partial sums of divisors of n, cf. A027750.

%C Triangle read by rows in which row n lists the partial sums of divisors of n. - _Omar E. Pol_, Apr 12 2014

%H Reinhard Zumkeller, <a href="/A240698/b240698.txt">Rows n = 1..1000 of table, flattened</a>

%F T(n,1) = 1, T(n,k) = T(n,k-1) + A027750(n,k), 1 < k <= n.

%F T(n,1) = 1;

%F T(n,A000005(n)) = A000203(n);

%F T(n,A000005(n)-1) = A001065(n), n > 1.

%e . n | n-th row of A240698 | n-th row of A027750

%e . ----+------------------------+---------------------

%e . 1 | 1 | 1

%e . 2 | 1, 3 | 1, 2

%e . 3 | 1, 4 | 1, 3

%e . 4 | 1, 3, 7 | 1, 2, 4

%e . 5 | 1, 6 | 1, 5

%e . 6 | 1, 3, 6, 12 | 1, 2, 3, 6

%e . 7 | 1, 8 | 1, 7

%e . 8 | 1, 3, 7, 15 | 1, 2, 4, 8

%e . 9 | 1, 4, 13 | 1, 3, 9

%e . 10 | 1, 3, 8, 18 | 1, 2, 5, 10

%e . 11 | 1, 12 | 1, 11

%e . 12 | 1, 3, 6, 10, 16, 28 | 1, 2, 3, 4, 6, 12

%e . 13 | 1, 14 | 1, 13 .

%t Table[Accumulate[Divisors[n]],{n,30}]//Flatten (* _Harvey P. Dale_, Dec 30 2019 *)

%o (Haskell)

%o a240698 n k = a240698_tabf !! (n-1) !! (k-1)

%o a240698_row n = a240698_tabf !! (n-1)

%o a240698_tabf = map (scanl1 (+)) a027750_tabf

%o (PARI) row(n) = my(d=divisors(n)); vector(#d, k, sum(i=1, k, d[i])); \\ _Michel Marcus_, Jan 24 2022

%Y Cf. A000005 (row lengths), A240694.

%Y Cf. A000203, A001065, A027750, A064510, A194472.

%K nonn,tabf

%O 1,3

%A _Reinhard Zumkeller_, Apr 10 2014