Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Feb 09 2024 11:15:51
%S 5,19,68,268,1040,4144,16448,65728,262400,1049344,4195328,16780288,
%T 67112960,268447744,1073758208,4295016448,17179934720,68719673344,
%U 274878169088,1099512414208,4398047559680,17592189190144,70368748371968,281474989293568,1125899923619840
%N a(n) = 2^(n-2)*(2^(n+4)-(-1)^n+5).
%H Vincenzo Librandi, <a href="/A240525/b240525.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,4,-16).
%F G.f.: (5-x-28*x^2)/(1-4*x-4*x^2+16*x^3).
%F a(n) = 4*a(n-1) + 4*a(n-2)- 16*a(n-3) with n>2, a(0)=5, a(1)=19, a(2)=68.
%F a(n) = (5*2^n-(-2)^n)/4+4^(n+1) = A084221(n)+A000302(n+1).
%t CoefficientList[Series[(5 - x - 28 x^2)/(1 - 4 x - 4 x^2 + 16 x^3), {x, 0, 33}], x]
%o (Magma) [2^(n-2)*(2^(n+4)-(-1)^n+5): n in [0..25]] /* or */ I:=[5,19,68]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2)-16*Self(n-3): n in [1..30]]
%o (PARI) a(n)=(2^(n+4)-(-1)^n+5)<<(n-2) \\ _Charles R Greathouse IV_, Aug 26 2014
%Y Cf. A000302, A084221.
%K nonn,easy
%O 0,1
%A _Vincenzo Librandi_, Apr 07 2014