%I
%S 0,0,0,1,1,1,2,2,5,5,8,10,16,19,25,33,46,53,72,89,114,141,183,217,278,
%T 339,421,510,632,759,931,1124,1361,1636,1977,2354,2830,3378,4034,4781,
%U 5695,6732,7975,9420,11098,13063,15376,18014,21124,24716,28883,33697
%N Number of partitions p of n such that the multiplicity of (max(p)  min(p)) is a part.
%e a(8) counts these 5 partitions: 431, 422, 3221, 32111, 22211.
%t z = 60; f[n_] := f[n] = IntegerPartitions[n];
%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Mean[p]]]], {n, 0, z}] (* A240491 *)
%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Median[p]]]], {n, 0, z}] (* A240492 *)
%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Min[p]]]], {n, 0, z}] (* A240493 *)
%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Max[p]]]], {n, 0, z}] (* A240494 *)
%t Table[Count[f[n], p_ /; MemberQ[p, Count[p, Max[p]  Min[p]]]], {n, 0, z}] (* A240495 *)
%Y Cf. A240491  A240494.
%K nonn,easy
%O 0,7
%A _Clark Kimberling_, Apr 06 2014
