%I #5 Apr 12 2014 16:24:20
%S 0,1,0,0,1,0,0,1,3,4,5,5,8,9,13,15,21,24,36,41,57,71,90,108,142,167,
%T 210,254,315,373,466,552,682,810,985,1173,1429,1683,2030,2404,2882,
%U 3390,4049,4755,5651,6630,7827,9157,10798,12593,14788,17224,20154,23420
%N Number of partitions p of n such that median(p) = multiplicity(min(p)).
%F a(n) = A240213(n) - A240212(n) for n >= 0.
%F a(n) + A240212(n) + A240215(n) = A000041(n) for n >= 0.
%e a(6) counts these 3 partitions: 422, 3311, 22211.
%t z = 40; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Median[p] < Count[p, Min[p]]], {n, 0, z}] (* A240212 *)
%t t2 = Table[Count[f[n], p_ /; Median[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240213 *)
%t t3 = Table[Count[f[n], p_ /; Median[p] == Count[p, Min[p]]], {n, 0, z}] (* A240214 *)
%t t4 = Table[Count[f[n], p_ /; Median[p] > Count[p, Min[p]]], {n, 0, z}] (* A240215 *)
%t t5 = Table[Count[f[n], p_ /; Median[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240216 *)
%Y Cf. A240212, A240213, A240215, A240216, A000041.
%K nonn,easy
%O 0,9
%A _Clark Kimberling_, Apr 04 2014