login
Number of partitions of n such that (least part) >= (multiplicity of least part).
3

%I #8 Apr 18 2014 00:58:12

%S 1,1,1,2,3,4,5,8,10,14,18,24,30,41,51,66,83,106,131,167,204,257,315,

%T 391,475,587,710,869,1049,1275,1529,1852,2213,2662,3173,3796,4506,

%U 5373,6356,7544,8900,10523,12373,14585,17101,20085,23494,27508,32087,37471

%N Number of partitions of n such that (least part) >= (multiplicity of least part).

%F a(n) = A096403(n) + A240176(n), for n >= 0.

%e a(6) counts these 5 partitions: 6, 51, 42, 33, 321.

%t z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}] (* A240175 *)

%t t2 = Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}] (* A188216 *)

%t t3 = Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}] (* A096403 *)

%t t4 = Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *)

%t t5 = Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)

%Y Cf. A188216, A096403, A240175, A240176.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Apr 02 2014