login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A240143
Number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is 7.
2
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 21, 1, 28, 2, 38, 4, 49, 7, 65, 12, 82, 19, 105, 30, 131, 45, 164, 67, 201, 96, 248, 136, 301, 188, 366, 258, 441, 347, 531, 463, 635, 609, 761, 795, 907, 1025, 1082, 1313, 1289, 1665, 1537, 2099, 1831, 2624
OFFSET
49,5
COMMENTS
With offset 56 number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is -7.
LINKS
FORMULA
a(n) = [x^n y^7] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1).
EXAMPLE
a(59) = 7: [23,11,9,7,5,3,1], [21,13,9,7,5,3,1], [19,15,9,7,5,3,1], [19,13,11,7,5,3,1], [17,15,11,7,5,3,1], [17,13,11,9,5,3,1], [15,13,11,9,7,3,1].
a(70) = 4: [19,13,11,9,7,5,3,2,1], [17,15,11,9,7,5,3,2,1], [17,13,11,9,7,5,4,3,1], [15,13,11,9,7,6,5,3,1].
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or
abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, -7):
seq(a(n), n=49..120);
CROSSREFS
Column k=7 of A240021.
Sequence in context: A240141 A049641 A240142 * A240144 A240145 A240146
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 02 2014
STATUS
approved