Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Apr 16 2014 05:52:32
%S 1,12,16,21,44,31,60,41,56,92,72,71,124,123,140,240,244,448,121,384,
%T 236,297,176,161,249,284,247,540,191,608,221,272,380,912,520,380,1024,
%U 371,428,912,852,508,1472,433,696,297,293,705,860,493,716,1456,668,512,924,636,1188,552,669,764,2112,1340,521,1504,951,1836,672,1176,1300,1107,1076,737,908,1520,641,776,661,821,1647,1416,1828
%N 2nd arithmetic derivative of products of 2 successive prime numbers (A006094).
%C The first arithmetic derivative of products of 2 successive prime numbers (A006094) is the sum of 2 successive prime numbers (A001043). A001043 = (A006094)’. The second arithmetic derivative is a(n)=( A001043)’ = (A006094)’’.
%H Freimut Marschner, <a href="/A240052/b240052.txt">Table of n, a(n) for n = 1..429</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Arithmetic_derivative">Arithmetic derivative</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/P-derivation">p-derivation</a>
%F a(n) = (A006094(n))''.
%F a(n) = A068346(A006094(n))= A003415(A003415(A006094(n))).
%e (2*3)’ = 1*3+2*1 = 5; (5)’ = 1; (2^2)’ = 2*2^1 = 2*2 = 4.
%p with(numtheory); P:=proc(q) local a,b,c,p,n;
%p for n from 1 to q do a:=ithprime(n)*ithprime(n+1);
%p b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]);
%p c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]);
%p print(c); od; end: P(10^3); # _Paolo P. Lava_, Apr 01 2014
%o (Haskell)
%o a240052 = a068346 . a006094 -- _Reinhard Zumkeller_, Apr 15 2014
%Y Cf. A006094, A001043.
%Y Cf. A003415 (1st derivative), A068346(2nd derivative).
%K nonn
%O 1,2
%A _Freimut Marschner_, Mar 31 2014