login
A240019
Number of partitions of n, where the difference between the number of odd parts and the number of even parts is 10.
2
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 209, 253, 318, 383, 474, 573, 701, 844, 1027, 1231, 1487, 1780, 2134, 2547, 3041, 3614, 4294, 5092, 6022, 7117, 8389, 9882, 11607, 13638, 15963, 18702, 21834, 25504, 29694, 34600
OFFSET
10,5
COMMENTS
With offset 20 number of partitions of n, where the difference between the number of odd parts and the number of even parts is -10.
LINKS
EXAMPLE
a(17) = 4: [6,1,1,1,1,1,1,1,1,1,1,1], [5,2,1,1,1,1,1,1,1,1,1,1], [4,3,1,1,1,1,1,1,1,1,1,1], [3,3,2,1,1,1,1,1,1,1,1,1].
MAPLE
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -10):
seq(a(n), n=10..80);
CROSSREFS
Column k=10 of A240009.
Sequence in context: A035979 A240018 A035989 * A036000 A002865 A085811
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 30 2014
STATUS
approved