login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239917
Theta series of 16-dimensional lattice OBW16, an overlattice of the Barnes-Wall lattice BW16.
1
1, 0, 0, 512, 4320, 18432, 61440, 193536, 522720, 1126400, 2211840, 4584960, 8960640, 14764032, 23224320, 40221696, 67154400, 96546816, 135168000, 210332160, 319809600, 423976960, 550195200, 801119232, 1147643520, 1436147712, 1771683840, 2462397440, 3371915520
OFFSET
0,4
COMMENTS
The 512 vectors of norm 3 form a spherical 5-design (see Neumaier, 1981). The corresponding configuration of 256 lines in 16-space was studied by Shult and Yanushka, 1980.
This theta series is an element of the space of modular forms on Gamma_0(4) of weight 8 and dimension 5. - Andy Huchala, May 15 2023
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
A. Neumaier, Combinatorial configurations in terms of distances, Report 81-09-Wiskunde, Tech. Univ. Eindhoven, 1981.
A. Neumaier, Lattices of simplex type, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 145--160. MR0699768 (85f:05040). See Example 3.
Ernest Shult, Arthur Yanushka, Arthur, Near n-gons and line systems, Geom. Dedicata 9 (1980), no. 1, 1--72. MR0566437 (82b:51018).
EXAMPLE
The theta series is 1 + 512*q^3 + 4320*q^4 + 18432*q^5 + 61440*q^6 + 193536*q^7 + 522720*q^8 + 1126400*q^9 + 2211840*q^10 + 4584960*q^11 + 8960640*q^12 + 14764032*q^13 + 23224320*q^14 + 40221696*q^15 + 67154400*q^16 + O(q^17).
PROG
(Magma)
L:=LatticeWithGram(16, [3,
-1, 3,
-1, -1, 3,
1, -1, 1, 3,
0, 1, 0, -1, 3,
-1, 0, 0, -1, -1, 3,
1, 0, 0, 1, -1, -1, 3,
-1, 0, 1, 0, 1, -1, -1, 3,
1, 0, -1, 0, -1, 1, 1, -1, 3,
-1, 0, 1, 0, -1, 0, 0, 1, -1, 3,
0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 3,
1, -1, 1, 1, -1, 0, 1, -1, 0, 0, 0, 3,
-1, 0, 1, 1, 0, -1, 0, 1, -1, 1, 0, 0, 3,
0, 0, 1, 0, 1, 0, -1, 1, -1, 0, 0, 0, -1, 3,
1, 1, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, -1, 1, 3,
1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 3]);
T<q>:=ThetaSeries(L, 16);
T;
CROSSREFS
Sequence in context: A186798 A017067 A186845 * A114287 A061209 A017259
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 13 2014
EXTENSIONS
More terms from Andy Huchala, May 15 2023
STATUS
approved