login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that ((p-1)/4)! is a primitive root mod p.
1

%I #11 Oct 01 2014 10:17:49

%S 13,17,41,53,101,137,149,277,313,317,389,401,433,449,521,557,569,673,

%T 677,701,761,769,809,857,877,953,977,1009,1129,1213,1277,1297,1361,

%U 1373,1409,1489,1493,1549,1613,1637,1657,1697,1709,1741,1789,1861,1873,1901

%N Primes p such that ((p-1)/4)! is a primitive root mod p.

%D John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials, II, Preprint, 2014.

%H Hiroaki Yamanouchi, <a href="/A239901/b239901.txt">Table of n, a(n) for n = 1..10000</a>

%o (PARI)

%o isok(n) = {

%o ret = 1;

%o if(n % 4 == 1 && isprime(n),

%o m = (n - 1) / 4;

%o r = m! % n;

%o f = factor(n - 1);

%o l = length(f~);

%o for(i=1, l,

%o if(Mod(r^((n-1)/f[i, 1]), n) == 1,

%o ret = 0;

%o );

%o );

%o ,

%o ret = 0;

%o );

%o ret;

%o } \\ _Hiroaki Yamanouchi_, Sep 30 2014

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Apr 06 2014

%E a(11)-a(48) from _Hiroaki Yamanouchi_, Sep 30 2014