Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 28 2014 08:41:54
%S 2,3,3,4,8,4,5,17,17,5,6,35,68,35,6,7,64,244,244,64,7,8,109,777,1613,
%T 777,109,8,9,176,2221,9066,9066,2221,176,9,10,272,5853,46260,94613,
%U 46260,5853,272,10,11,405,14488,214126,874352,874352,214126,14488,405,11,12
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or two plus the sum of the elements diagonally to its northwest, modulo 4
%C Table starts
%C ..2...3.....4........5..........6...........7............8............9
%C ..3...8....17.......35.........64.........109..........176..........272
%C ..4..17....68......244........777........2221.........5853........14488
%C ..5..35...244.....1613.......9066.......46260.......214126.......921674
%C ..6..64...777.....9066......94613......874352......7359682.....57010666
%C ..7.109..2221....46260.....874352....15039319....232886648...3315673203
%C ..8.176..5853...214126....7359682...232886648...6712505927.177152281120
%C ..9.272.14488...921674...57010666..3315673203.177152281120
%C .10.405.34057..3745690..415293446.44101959522
%C .11.584.76495.14493362.2875073417
%H R. H. Hardin, <a href="/A239849/b239849.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: a(n) = n + 1
%F k=2: a(n) = (1/24)*n^4 + (1/12)*n^3 + (11/24)*n^2 + (53/12)*n - 6 for n>2
%F k=3: [polynomial of degree 13] for n>9
%F k=4: [polynomial of degree 40] for n>31
%F k=5: [polynomial of degree 121] for n>98
%e Some solutions for n=4 k=4
%e ..0..0..0..0....0..0..0..3....3..3..0..0....0..0..0..0....0..0..3..3
%e ..0..0..0..3....3..3..0..1....3..2..3..3....0..3..3..0....0..3..3..2
%e ..0..0..3..1....3..2..3..0....0..0..2..1....0..3..2..0....3..1..2..0
%e ..0..0..3..2....0..3..1..3....0..3..3..0....0..0..3..2....3..2..0..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 28 2014