login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239777
Number of pairs of functions f, g on a size n set into itself satisfying f(g(g(x))) = f(x).
2
1, 1, 12, 249, 7744, 326745, 17773056, 1197261289, 97165842432, 9294416254161, 1030298497753600, 130527793649586201, 18685034341191917568, 2993332161753700720681, 532270629438646194561024, 104316725427708352041239625, 22394627939996943667912769536
OFFSET
0,3
LINKS
MAPLE
s:= proc(n, i) option remember; `if`(i=0, [[]],
map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
end:
a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
f[g[g[i]]]=f[i]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
end:
seq(a(n), n=0..5); # Alois P. Heinz, Jul 16 2014
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!
*x^((2-irem(i, 2))*j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> add((p-> add(n^i*binomial(n-1, k-1)*n^(n-k)*
coeff(p, x, i), i=0..degree(p)))(b(k$2)), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 06 2014
MATHEMATICA
c[n_] := c[n] =
Sum[(n - 1)! n^(n - k)/(n - k)! t^(1 + Mod[k + 1, 2]), {k, 1, n}]
d[0] = 1
d[n_] := d[n] = Sum[Binomial[n - 1, k]*d[k]*c[n - k], {k, 0, n - 1}]
a[n_] := d[n] /. t -> n
Table[a[n], {n, 1, 10}] (* David Einstein, Nov 02 2016*)
CROSSREFS
Column k=2 of A245910.
Sequence in context: A064749 A009472 A012066 * A245919 A245913 A245917
KEYWORD
nonn
AUTHOR
Chad Brewbaker, Mar 26 2014
EXTENSIONS
a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Aug 06 2014
STATUS
approved