OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..241
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * k^k * (Sum_{j=0..n-k} C(n-k,j)*k^j*(j+k-1)^j*((n-k)*(j+k))^(n-j-k)). - David Einstein, Oct 11 2016
MATHEMATICA
Unprotect[Power]; 0^0 = 1;
a[n_] := If[n == 0, 1, Sum[Binomial[n, k] k^k Sum[Binomial[n - k, j] k^j (j + k - 1)^j ((n - k)(j + k))^(n - j - k), {j, 0, n - k}], {k, 1, n}]];
a /@ Range[0, 15] (* Jean-François Alcover, Oct 04 2019 *)
PROG
(PARI) a(n) = if(n==0, 1, sum(k=1, n, binomial(n, k) * k^k * (sum(j=0, n-k, binomial(n-k, j)*k^j*(j+k-1)^j*((n-k)*(j+k))^(n-j-k))))) \\ Joerg Arndt, Oct 13 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Chad Brewbaker, Mar 26 2014
EXTENSIONS
a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(15) from David Einstein, Oct 11 2016
STATUS
approved