Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 03 2023 10:36:13
%S 53,317,599,797,2393,3793,3797,7331,23333,23339,31193,31379,37397,
%T 73331,373393,593993,719333,739397,739399,2399333,7393931,7393933,
%U 23399339,29399999,37337999,59393339,73939133
%N Super-prime leaders: right-truncatable primes p with property that appending any single decimal digit to p does not produce a prime.
%C The name "super-prime leaders" is not due to the author.
%D Joe Roberts, Lure of the Integers, The Mathematical Association of America, 1992, p. 292.
%H Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/RightTruncatablePrime.html">Right-truncatable prime</a>
%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/10119.html">Prime Curios! 53</a>
%H Kvant magazine, <a href="http://kvant.mccme.ru/1970/11/naiprostejshie_prostye_chisla.htm">The simplest prime numbers</a>, (in Russian) No 11, 1979. (beware of typo)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TruncatablePrime.html">Truncatable Prime</a>
%H <a href="/index/Tri#tprime">Index entries for sequences related to truncatable primes</a>
%F A024770 INTERSECT A119289.
%e 2393 belongs to this sequence because 2393, 239, 23 and 2 are all prime; 10*2393 + k, for k = 0 to 9, are all composite.
%o (PARI) f=1; for(n=2, 73939133, v=n; t=1; while(isprime(n), if(!Mod(f, n^2)==0, t=t*n); c=n; n=(c-lift(Mod(c, 10)))/10); if(n==0, f=f*t); n=v); s=Set(factor(f)[, 1]); for(k=1, #s, p=s[k]; if(!Mod(f, p^2)==0, print1(p, ", ")));
%Y Subsequence of A024770 and of A119289.
%K nonn,base,fini,full
%O 1,1
%A _Arkadiusz Wesolowski_, Mar 26 2014