login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form m = 2^i + 2^j - 1, where i > j >= 0.
14

%I #28 May 14 2017 12:02:07

%S 2,5,11,17,19,23,47,67,71,79,131,191,257,263,271,383,1031,1039,1087,

%T 1151,1279,2063,2111,4099,4111,4127,4159,5119,6143,8447,16447,20479,

%U 32771,32783,32831,33023,33791,65537,65539,65543,65551,65599,66047,73727,81919,262147,262151,262271,262399,263167

%N Primes of the form m = 2^i + 2^j - 1, where i > j >= 0.

%C Numbers m such that b = 2 is the only base such that the base-b digital sum of m + 1 is equal to b.

%C Example: 5 + 1 = 110_2 which implies ds_2(5 + 1) = 2 = b, where ds_b = digital sum in base-b. However, ds_3(6) = 2 <> 3, ds_4(6) = 3 <> 4, ds_5(6) = 2 <> 5, ds_6(6) = 1 <> 6. For all other bases > 6 we have ds_b(6) = 6 <> b. It follows that b = 2 is the only such base.

%C The base-2 representation of a term 2^i + 2^j - 1 has a base-2 digital sum of 1 + j.

%C In base-2 representation the first terms are 10, 101, 1011, 10001, 10011, 10111, 101111, 1000011, 1000111, 1001111, 10000011, 10111111, 100000001, 100000111, 100001111, 101111111, 10000000111, 10000001111, 10000111111, 10001111111, ...

%C Numbers m = 2^i + 2^j - 1 with odd i and j are not terms. Example: 10239 = 2^13 + 2^11 - 1 is not a prime.

%H Hieronymus Fischer, <a href="/A239712/b239712.txt">Table of n, a(n) for n = 1..250</a>

%F a(n) = A239708(n) - 1.

%F a(n+1) = min(A018900(k) > a(n)| A018900(k) - 1 is prime, k >= 1) - 1.

%e a(1) = 2, since 2 = 2^1 + 2^0 - 1 is prime.

%e a(5) = 19, since 19 = 2^4 + 2^2 - 1 is prime.

%t Select[Union[Total/@(2^#&/@Subsets[Range[0,20],{2}])-1],PrimeQ] (* _Harvey P. Dale_, Aug 08 2014 *)

%o (Smalltalk)

%o A239712

%o "Answers the n-th term of A239712.

%o Usage: n A239712

%o Answer: a(n)"

%o | a b i k m p q terms |

%o terms := OrderedCollection new.

%o b := 2.

%o p := 1.

%o k := 0.

%o m := 0.

%o [k < self] whileTrue:

%o [m := m + 1.

%o p := b * p.

%o q := 1.

%o i := 0.

%o [i < m and: [k < self]] whileTrue:

%o [i := i + 1.

%o a := p + q - 1.

%o a isPrime

%o ifTrue:

%o [k := k + 1.

%o terms add: a].

%o q := b * q]].

%o ^terms at: self

%o [by _Hieronymus Fischer_, Apr 22 2014]

%o -----------

%o (Smalltalk)

%o floorPrimesWhichAreDistinctPowersOf: b withOffset: d

%o "Answers an array which holds the primes < n that obey b^i + b^j + d, i>j>=0,

%o where n is the receiver. b > 1 (here: b = 2, d = -1).

%o Uses floorDistinctPowersOf: from A018900

%o Usage:

%o n floorPrimesWhichAreDistinctPowersOf: b withOffset: d

%o Answer: #(2 5 11 17 19 23 ...) [terms < n]"

%o ^((self - d floorDistinctPowersOf: b)

%o collect: [:i | i + d]) select: [:i | i isPrime]

%o [by _Hieronymus Fischer_, Apr 22 2014]

%o ------------

%o (Smalltalk)

%o primesWhichAreDistinctPowersOf: b withOffset: d

%o "Answers an array which holds the n primes of the form b^i + b^j + d, i>j>=0, where n is the receiver.

%o Direct calculation by scanning b^i + b^j + d in increasing order and selecting terms which are prime.

%o b > 1; this sequence: b = 2, d = 1.

%o Usage:

%o n primesWhichAreDistinctPowersOf: b withOffset: d

%o Answer: #(2 5 11 17 19 23 ...) [a(1) ... a(n)]"

%o | a k p q terms n |

%o terms := OrderedCollection new.

%o n := self.

%o k := 0.

%o p := b.

%o [k < n] whileTrue:

%o [q := 1.

%o [q < p and: [k < n]] whileTrue:

%o [a := p + q + d.

%o a isPrime

%o ifTrue:

%o [k := k + 1.

%o terms add: a].

%o q := b * q].

%o p := b * p].

%o ^terms asArray

%o [by _Hieronymus Fischer_, Apr 22 2014]

%Y Cf. A007953, A018900, A081091, A008864, A187813.

%Y Cf. A239703, A239708, A239709, A239713 - A239720.

%K nonn

%O 1,1

%A _Hieronymus Fischer_, Mar 28 2014 and Apr 22 2014

%E Examples moved from Maple field to Examples field by _Harvey P. Dale_, Aug 08 2014