login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1, a(n+1) = smallest number not occurring earlier, having with a(n) neither a common digit nor a common divisor.
5

%I #8 Sep 17 2016 12:38:46

%S 1,2,3,4,5,6,7,8,9,10,23,11,20,13,22,15,26,17,24,19,25,14,27,16,29,18,

%T 35,12,37,21,34,55,28,31,40,33,41,30,47,32,45,38,49,36,59,42,53,44,39,

%U 46,51,43,50,61,48,65,71,52,63,58,67,54,73,56,79,60,77

%N a(n) = 1, a(n+1) = smallest number not occurring earlier, having with a(n) neither a common digit nor a common divisor.

%H Reinhard Zumkeller, <a href="/A239664/b239664.txt">Table of n, a(n) for n = 1..10000</a>

%o (Haskell)

%o import Data.List (delete, intersect); import Data.Function (on)

%o a239664 n = a239664_list !! (n-1)

%o a239664_list = 1 : f 1 [2..] where

%o f v ws = g ws where

%o g (x:xs) = if gcd v x == 1 && ((intersect `on` show) v x == "")

%o then x : f x (delete x ws) else g xs

%o (PARI) {u=[]; a=1; for(n=1,99, print1(a","); u=setunion(u,[a]); while(#u>1&&u[2]==u[1]+1,u=u[^1]); for(k=u[1]+1,9e9, setsearch(u,k)&&next;gcd(k,a)>1&&next; #setintersect(Set(digits(a)),Set(digits(k)))&&next; a=k; next(2)));a} \\ _M. F. Hasler_, Sep 17 2016

%Y Cf. A054659, A067581, A276633, A276512.

%K nonn,base

%O 1,2

%A _Reinhard Zumkeller_, Mar 23 2014