Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #88 Sep 23 2021 12:01:30
%S 1,3,9,21,63,147,357,903,2499,6069,13915,29095,59455,142945,320045,
%T 643885,1367465,3287735,6779135,13853015,30262595,61773745
%N a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.
%C Conjecture: where records occur in A237271. - _Omar E. Pol_, Dec 27 2016
%C For more information about the symmetric representation of sigma see A237270, A237593.
%C This sequence of (first occurrence of) parts appears to be strictly increasing in contrast to sequence A250070 of (first occurrence of) maximum widths. - _Hartmut F. W. Hoft_, Dec 09 2014
%C It appears that all terms are odd numbers. - _Omar E. Pol_, Oct 14 2018
%C Let n = 2^m * q with m>0 and q odd; then the 1's in even positions of row n in the triangle of A237048 are at positions 2^(m+1) * d <= row(n) where d divides q. For n/2 the even positions of 1's occur at the smaller values 2^m * d <= row(n/2), thus either keeping or reducing widths (A249223) of parts in the symmetric representation of sigma for n/2 inherited from row n. Therefore the number of parts for n is at most as large as for n/2, i.e., all numbers in this sequence are odd. - _Hartmut F. W. Hoft_, Sep 22 2021
%C Observation: at least for n = 1..21 we have that 2*a(n) < a(n+1). - _Omar E. Pol_, Sep 22 2021
%H Hartmut F. W. Hoft, <a href="/A239663/a239663.pdf">Procedural implementation for extension values</a>
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the stepped pyramid (16 levels)</a>
%e ------------------------------------------------------
%e n a(n) A239665 A266094(n)
%e ------------------------------------------------------
%e 1 1 [1] 1
%e 2 3 [2, 2] 4
%e 3 9 [5, 3, 5] 13
%e 4 21 [11, 5, 5, 11] 32
%e 5 63 [32, 12, 16, 12, 32] 104
%e ...
%e For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below:
%e .
%e . _ _ _ _ _ 5
%e . |_ _ _ _ _|
%e . |_ _ 3
%e . |_ |
%e . |_|_ _ 5
%e . | |
%e . | |
%e . | |
%e . | |
%e . |_|
%e .
%t (* a239663[] permits computation in intervals *)
%t (* Function a237270[] is defined in A237270 *)
%t (* variable "list" contains the first occurrences up to m *)
%t a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts]
%t a239663[{1}, {1, 1000}] (* computes the first 8 values *)
%t (* _Hartmut F. W. Hoft_, Jul 08 2014 *)
%t (* support functions are defined in A341969, A341970 & A341971 *)
%t a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
%t a239663[62000000,22] (* _Hartmut F. W. Hoft_, Sep 22 2021 *)
%Y Row 1 of A240062.
%Y Cf. A000203, A196020, A236104, A235791, A237048, A237270, A237271, A237591, A237593, A238443, A239657, A239660, A239665, A239931-A239934, A245092, A262626, A266094.
%Y Cf. A249223, A250070, A262045, A320521, A341969, A341970, A341971, A347980.
%K nonn,more,hard
%O 1,2
%A _Omar E. Pol_, Mar 23 2014
%E a(6)-a(8) from _Michel Marcus_, Mar 28 2014
%E a(9) from _Michel Marcus_, Mar 29 2014
%E a(10)-a(11) from _Michel Marcus_, Apr 02 2014
%E a(12) from _Hartmut F. W. Hoft_, Jul 08 2014
%E a(13)-a(18) from _Hartmut F. W. Hoft_, Dec 09 2014
%E a(19)-a(22) from _Hartmut F. W. Hoft_, Sep 22 2021