OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).
FORMULA
G.f.: (x + 3*x^2 - 2*x^4)/(1 - 2*x^2)^2.
a(n) = Sum_{k=1..n} A051159(n,k)*k.
a(n) = 4*a(n-2) - 4*a(n-4) for n > 3. - Giovanni Resta, Mar 23 2014
a(2k) = (2k+1)*2^(k-1) for k>0, a(2k+1) = (2k+2)*2^(k-1) for k>=0. - Gregory L. Simay, Dec 05 2022
E.g.f.: (2*(1 + x)*cosh(sqrt(2)*x) + sqrt(2)*(1 + 2*x)*sinh(sqrt(2)*x) - 2)/4. - Stefano Spezia, Apr 25 2024
EXAMPLE
a(5)=12 because we have: 5, 1+3+1, 2+1+2, 1+1+1+1+1 with a total of 12 parts.
MATHEMATICA
nn=30; r=Solve[p==y/(1-x) - y + 1 + y^2*x^2/(1-x^2)*p, p]; CoefficientList[Series[D[p/.r, y]/.y->1, {x, 0, nn}], x]
CoefficientList[Series[(x + 3 x^2 - 2 x^4)/(1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Mar 22 2014
STATUS
approved