login
A239632
Number of parts in all palindromic compositions of n.
2
0, 1, 3, 4, 10, 12, 28, 32, 72, 80, 176, 192, 416, 448, 960, 1024, 2176, 2304, 4864, 5120, 10752, 11264, 23552, 24576, 51200, 53248, 110592, 114688, 237568, 245760, 507904, 524288, 1081344, 1114112, 2293760, 2359296, 4849664, 4980736, 10223616, 10485760, 21495808, 22020096, 45088768, 46137344
OFFSET
0,3
FORMULA
G.f.: (x + 3*x^2 - 2*x^4)/(1 - 2*x^2)^2.
a(n) = Sum_{k=1..n} A051159(n,k)*k.
a(n) = 4*a(n-2) - 4*a(n-4) for n > 3. - Giovanni Resta, Mar 23 2014
a(2k) = (2k+1)*2^(k-1) for k>0, a(2k+1) = (2k+2)*2^(k-1) for k>=0. - Gregory L. Simay, Dec 05 2022
E.g.f.: (2*(1 + x)*cosh(sqrt(2)*x) + sqrt(2)*(1 + 2*x)*sinh(sqrt(2)*x) - 2)/4. - Stefano Spezia, Apr 25 2024
EXAMPLE
a(5)=12 because we have: 5, 1+3+1, 2+1+2, 1+1+1+1+1 with a total of 12 parts.
MATHEMATICA
nn=30; r=Solve[p==y/(1-x) - y + 1 + y^2*x^2/(1-x^2)*p, p]; CoefficientList[Series[D[p/.r, y]/.y->1, {x, 0, nn}], x]
CoefficientList[Series[(x + 3 x^2 - 2 x^4)/(1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
CROSSREFS
Cf. A051159.
Sequence in context: A362553 A360620 A092434 * A031367 A073443 A257494
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Mar 22 2014
STATUS
approved