login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239592
a(n) = (n^4 - n^3 + 4*n^2 + 2)/2.
2
1, 3, 13, 46, 129, 301, 613, 1128, 1921, 3079, 4701, 6898, 9793, 13521, 18229, 24076, 31233, 39883, 50221, 62454, 76801, 93493, 112773, 134896, 160129, 188751, 221053, 257338, 297921, 343129, 393301, 448788, 509953, 577171, 650829, 731326, 819073, 914493
OFFSET
0,2
COMMENTS
Main diagonal of square array A239331.
FORMULA
G.f.: (1 - 2*x + 8*x^2 + x^3 + 4*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), a(0) = 1, a(1) = 3, a(2) = 13, a(3) = 46, a(4) = 129.
a(n) = A058331(n) + A092364(n).
MATHEMATICA
CoefficientList[Series[(1 - 2 x + 8 x^2 + x^3 + 4 x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
PROG
(PARI) Vec((1-2*x+8*x^2+x^3+4*x^4)/(1-x)^5 + O(x^100)) \\ Colin Barker, Mar 22 2014
(Magma) [(n^4-n^3+4*n^2 + 2)/2: n in [0..40]]; // Vincenzo Librandi, Mar 23 2014
CROSSREFS
Cf. A239331.
Sequence in context: A121136 A378069 A350175 * A017943 A220117 A379154
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 22 2014
STATUS
approved