Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Mar 08 2017 11:55:18
%S 0,6,27,75,165,315,546,882,1350,1980,2805,3861,5187,6825,8820,11220,
%T 14076,17442,21375,25935,31185,37191,44022,51750,60450,70200,81081,
%U 93177,106575,121365,137640,155496,175032,196350,219555,244755,272061,301587,333450,367770
%N Number of ways to place 2 points on a triangular grid of side n so that they are not adjacent.
%H Heinrich Ludwig, <a href="/A239568/b239568.txt">Table of n, a(n) for n = 2..1000</a>
%H M. J. Hay, J. Schiff, N. J. Fisch, <a href="http://arxiv.org/abs/1508.03499">Maximal energy extraction under discrete diffusive exchange</a>, arXiv preprint arXiv:1508.03499, 2015
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1)
%F a(n) = n*(n-1)*(n-2)*(n+5)/8.
%F G.f.: 3*x^3*(x-2) / (x-1)^5. - _Colin Barker_, Mar 22 2014
%F a(n) = Sum_{i=0..n} (i+5)*A000217(i). - _Bruno Berselli_, Apr 29 2014
%F a(n) = t(t(n,k),n) + n, where t(n,k) = n*(n+1)/2 + k*n and t(n,1) = A000096(n). - _Bruno Berselli_, Feb 28 2017
%o (PARI) concat(0, Vec(3*x^3*(x-2)/(x-1)^5 + O(x^100))) \\ _Colin Barker_, Mar 22 2014
%Y Cf. A239567, A032091, A239569 (3 points), A239570 (4 points), A239571 (5 points), A282998 (6 points).
%Y Regarding the third formula, see similar sequences listed in A241765.
%K nonn,easy
%O 2,2
%A _Heinrich Ludwig_, Mar 22 2014