login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X (3+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.
1

%I #7 Oct 26 2018 09:15:06

%S 6,6,216,1014,13254,98304,984150,8368566,77673624,687582150,

%T 6243858486,55924463616,504631320486,4535315519334,40848737643864,

%U 367488643786134,3308125850845350,29769598506080256,267943541451802614

%N Number of (n+1) X (3+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

%H R. H. Hardin, <a href="/A239532/b239532.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) + 26*a(n-2) - 166*a(n-3) + 96*a(n-4) + 198*a(n-5) - 81*a(n-6).

%F Empirical g.f.: 6*(1 - 7*x + 2*x^2 + 21*x^3 - 9*x^4) / ((1 + x)*(1 - 9*x)*(1 - 3*x + x^2)*(1 + 3*x - 9*x^2)). - _Colin Barker_, Oct 26 2018

%e Some solutions for n=5:

%e ..0..1..0..2....0..1..0..1....0..1..1..0....0..1..2..0....0..1..2..1

%e ..0..1..0..2....0..1..0..1....0..1..1..0....0..1..2..0....0..1..2..1

%e ..1..0..0..2....0..1..2..1....0..1..2..1....1..0..1..2....2..1..0..1

%e ..1..0..0..2....0..2..2..1....1..2..2..1....1..0..1..2....2..0..0..1

%e ..0..1..1..0....0..2..0..1....1..2..2..1....1..0..2..0....1..0..2..1

%e ..0..1..1..0....0..2..0..1....1..2..2..1....1..0..2..0....1..0..2..1

%Y Column 3 of A239537.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 21 2014