Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 05 2021 17:40:55
%S 1,1,9,9,7,6,5,1,2,7,4,8,0,7,7,8,9,6,7,3,0,4,9,8,4,0,0,4,3,1,2,9,2,0,
%T 7,6,2,8,2,0,7,0,5,1,9,3,3,4,7,8,6,3,4,7,1,6,2,0,7,7,4,0,4,9,6,9,2,7,
%U 1,4,7,6,2,0,7,5,6,3,4,7,4,8,1,7,2,5,9,1,4,4,0,6,7,9,3,1,5,4,2,8,0,2,1,9,0,7
%N Decimal expansion of a constant related to A048285.
%H J. G. Penaud and O. Roques, <a href="https://dx.doi.org/10.1016/S0012-365X(01)00261-8">Génération de chemins de Dyck à pics croissants</a>, Discrete Mathematics, Vol. 246, no. 1-3 (2002), 255-267.
%F Equals lim n->infinity A048285(n)/((3+sqrt(5))/2)^n.
%e 0.11997651274807789673049840043129207628207...
%t RealDigits[N[(Sqrt[5]-3)/(Sqrt[5]-5)*Sum[(-1)^k*x^(2*k)/Product[(1-x)*(1-x^i)-x,{i,2,k+1}],{k,0,300}]/.x->(3-Sqrt[5])/2,60]][[1]]
%Y Cf. A048285.
%K nonn,cons
%O 0,3
%A _Vaclav Kotesovec_, Mar 21 2014