login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239506
Numbers n such that n^10+10 and n^10-10 are prime.
0
4983, 105369, 113289, 150051, 191829, 208131, 277167, 305349, 363957, 400323, 494241, 541233, 577269, 656271, 668547, 995247, 1141503, 1218261, 1360623, 1494537, 1501863, 1528857, 1531959, 1534533, 1535919, 1621653, 1651551, 1864863, 1950597, 1969539, 2130513
OFFSET
1,1
COMMENTS
All numbers are congruent to 33 mod 66.
Intersection of A239347 and A239418.
EXAMPLE
4983^10+10 = 9438628041688305771192954743294050459 is prime and 4983^10-10 = 9438628041688305771192954743294050439 is prime. Thus, 4983 is a member of this sequence.
MATHEMATICA
Select[Range[22*10^5], AllTrue[#^10+{10, -10}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 04 2018 *)
PROG
(Python)
import sympy
from sympy import isprime
def TwoBoth(x):
..for k in range(10**8):
....if isprime(k**x+x) and isprime(k**x-x):
......print(k)
TwoBoth(10)
CROSSREFS
Sequence in context: A233630 A254696 A203064 * A237563 A248486 A070001
KEYWORD
nonn
AUTHOR
Derek Orr, Mar 20 2014
STATUS
approved