%I #29 Jan 02 2023 12:30:50
%S 4,10,74,212,1856,5618,53114,1630932,5161442,167427844,1729192432,
%T 5577731626,58401766802,2005139696964,69737304018266,228184540445268,
%U 8043367476888770,86866463049858250,285815985033409648,10225367934387562098,111384745483589787826
%N (Round(q^prime(n)) - 1)/prime(n), where q is the tribonacci constant (A058265).
%C For n>=3, round(q^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.
%H S. Litsyn and V. Shevelev, <a href="http://dx.doi.org/10.1142/S1793042105000339">Irrational Factors Satisfying the Little Fermat Theorem</a>, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
%H V. Shevelev, <a href="http://list.seqfan.eu/oldermail/seqfan/2014-March/012750.html">A property of n-bonacci constant</a>, Seqfan (Mar 23 2014)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TribonacciConstant.html">Tribonacci Constant</a>
%e For n=3, q^5 = 21.049..., so a(3) = (21 - 1)/5 = 4.
%Y Cf. A007619, A007663, A238693, A238697, A238698, A238700, A058265.
%K nonn
%O 3,1
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Mar 20 2014