Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Nov 16 2017 02:42:50
%S 2,2,2,4,2,3,2,8,8,5,2,4,2,7,4,16,2,9,2,5,6,11,2,9,7,13,26,4,2,6,2,32,
%T 10,17,6,9,2,19,12,16,2,7,2,12,8,23,2,16,18,25,16,9,2,27,10,8,18,29,2,
%U 16,2,31,8,64,5,3,2,17,22,11,2,9,2,37,24,20,21
%N Smallest integer m > 1 such that m^n == m (mod n).
%C Composite n are Fermat weak pseudoprimes to base a(n).
%C If n > 2 is prime then a(n) = 2. The converse is false : a(341) = 2 and 341 isn't prime.
%C a(n) <= A105222(n). a(n) = A105222(n) if and only if a(n) is coprime to n.
%C For n > 1, a(n) <= n and if a(n) = n, then A105222(n) = n+1.
%C It seems that a(n) = n if and only if n = 2^k with k > 0, a(n) = n-1 if and only if n = 3^k with k > 0, a(2n) = n if and only if n = p^k where p is an odd prime and k > 0. - _Thomas Ordowski_, Oct 19 2017
%H Giovanni Resta, <a href="/A239452/b239452.txt">Table of n, a(n) for n = 1..10000</a>
%H Gérard P. Michon, <a href="http://www.numericana.com/answer/pseudo.htm#weak">Weak pseudoprimes to base a</a>
%e We have 2^4 != 2, 3^4 != 3, but 4^4 == 4 (mod 4), so a(4) = 4.
%p L:=NULL:for n to 100 do for a from 2 while a^n - a mod n !=0 do od; L:=L,a od: L;
%t a[n_] := Block[{m = 2}, While[PowerMod[m, n, n] != Mod[m, n], m++]; m]; Array[a, 100] (* _Giovanni Resta_, Mar 19 2014 *)
%o (Haskell)
%o import Math.NumberTheory.Moduli (powerMod)
%o a239452 n = head [m | m <- [2..], powerMod m n n == mod m n]
%o -- _Reinhard Zumkeller_, Mar 19 2014
%o (Python)
%o L=[];
%o for n in range(1,101):
%o ...a=2
%o ...while (a**n - a) % n != 0:
%o ......a+=1
%o ...L=L+[a]
%o L
%o (PARI) a(n)=my(m=2); while(Mod(m,n)^n!=m, m++); m \\ _Charles R Greathouse IV_, Mar 21 2014
%Y Cf. A105222.
%K nonn
%O 1,1
%A _Robert FERREOL_, Mar 19 2014
%E a(20)-a(77) from _Giovanni Resta_, Mar 19 2014