login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239450
Numbers m such that T(m)^2 + T(m^2) is a perfect square, where T = A000217.
1
0, 3, 47, 659, 9183, 127907, 1781519, 24813363, 345605567, 4813664579, 67045698543, 933826115027, 13006519911839, 181157452650723, 2523197817198287, 35143611988125299, 489487370016555903, 6817679568243657347, 94958026585394646959, 1322594692627281400083
OFFSET
1,2
COMMENTS
The sequence of numbers k such that k^2 is representable as T(m)^2 + T(m^2) begins: 0, 9, 1927, 376289, 73032399, 14168386297, 2748600555479.
After 0, numbers k such that 3*k^2 + 2*k + 3 is a square. - Bruno Berselli, Aug 31 2017
FORMULA
a(n) = 15*(a(n-1) - a(n-2)) + a(n-3) for n > 4. - Giovanni Resta, Mar 19 2014
From Bruno Berselli, Mar 19 2014: (Start)
G.f.: x^2*(1 + x)*(3 - x)/((1 - x)*(1 - 14*x + x^2)).
a(n) = 4*A046174(n-1) - 1 for n > 1. (End)
a(n) = (-1 + (7 + 4*sqrt(3))^n*(-19 + 11*sqrt(3)) - (7 - 4*sqrt(3))^n*(19 + 11*sqrt(3)))/3 for n > 1. - Colin Barker, Mar 05 2016
EXAMPLE
T(3)^2 + T(3^2) = 6^2 + 9*10/2 = 36+45 = 81. Because 81 is a perfect square, 3 is in the sequence.
MATHEMATICA
a[1]=0; a[2]=3; a[3]=47; a[4]=659; a[n_] := a[n] = 15*(a[n-1] - a[n-2]) + a[n-3]; Array[a, 50] (* Giovanni Resta, Mar 19 2014 *)
Join[{0}, LinearRecurrence[{15, -15, 1}, {3, 47, 659}, 20]] (* Harvey P. Dale, Feb 02 2015 *)
CoefficientList[Series[x (1 + x) (3 - x) / ((1 - x) (1 - 14 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 03 2015 *)
PROG
(PARI) isok(n) = issquare((n*(n+1)/2)^2 + n^2*(n^2+1)/2); \\ Michel Marcus, Mar 19 2014
(Magma) I:=[0, 3, 47, 659]; [n le 4 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Feb 03 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Mar 19 2014
EXTENSIONS
a(11)-a(20) from Giovanni Resta, Mar 19 2014
STATUS
approved