%I #4 Mar 17 2014 17:46:54
%S 2,4,5,8,23,12,16,105,129,28,32,478,1337,698,66,64,2165,13977,16449,
%T 3805,156,128,9811,144762,394509,205969,20818,368,256,44399,1504399,
%U 9340070,11334364,2590704,113774,868,512,201006,15591122,222457036,614216271
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4
%C Table starts
%C ....2.......4..........8............16................32...................64
%C ....5......23........105...........478..............2165.................9811
%C ...12.....129.......1337.........13977............144762..............1504399
%C ...28.....698......16449........394509...........9340070............222457036
%C ...66....3805.....205969......11334364.........614216271..........33522573911
%C ..156...20818....2590704.....326882784.......40566958960........5072216819342
%C ..368..113774...32507376....9402398952.....2671846338458......765206237815409
%C ..868..621754..408000104..270516990628...176044655676921...115478426410506313
%C .2048.3399032.5124790809.7789048968124.11610439554314901.17442858177037612521
%H R. H. Hardin, <a href="/A239405/b239405.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) +2*a(n-3)
%F k=2: [order 16]
%F k=3: [order 64]
%F Empirical for row n:
%F n=1: a(n) = 2*a(n-1)
%F n=2: a(n) = 3*a(n-1) +12*a(n-2) -18*a(n-3) -29*a(n-4) +19*a(n-5) +38*a(n-6) +8*a(n-7)
%F n=3: [order 25]
%F n=4: [order 91]
%e Some solutions for n=3 k=4
%e ..0..0..3..3....3..1..0..0....0..3..3..1....0..0..3..3....3..3..1..3
%e ..0..0..0..2....0..0..3..3....3..3..0..2....3..3..0..2....0..3..2..0
%e ..0..0..0..2....3..1..3..2....2..2..3..2....0..0..3..1....0..2..2..3
%Y Column 1 is A239333
%Y Row 1 is A000079
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 17 2014