Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 21 2014 20:05:06
%S 1,0,1,1,0,1,1,0,0,1,2,0,1,0,1,1,1,1,0,0,1,3,0,3,0,1,0,1,2,1,1,2,1,0,
%T 0,1,5,0,5,0,4,0,1,0,1,3,2,3,2,1,3,1,0,0,1,8,0,10,0,7,0,5,0,1,0,1,5,3,
%U 5,5,4,3,1,4,1,0,0,1,13,0,18,0,16,0,9,0,6,0,1,0,1,8,5,10,8,7,9,5,4,1,5,1,0,0,1
%N Triangular array read by rows: T(n,k) is the number of palindromic compositions of n having exactly k 1's, n>=0, 0<=k<=n.
%C Row sums = 2^floor(n/2).
%C T(n,0) = A053602(n-1) for n>0, T(n,1) = A079977(n-5) for n>4, T(2n+1,3) = A006367(n-1) for n>0, both bisections of column k=2 contain A010049. - _Alois P. Heinz_, Mar 21 2014
%H Alois P. Heinz, <a href="/A239366/b239366.txt">Rows n = 0..140, flattened</a>
%F G.f.: G(x,y) = ((1 + x)*(1 - x + x^2 + x*y - x^2*y))/(1 - x^2 - x^4 - x^2*y^2 + x^4*y^2). Satisfies G(x,y) = 1/(1 - x) - x + y*x + (x^2/(1 - x^2) - x^2 +y^2*x^2)*G(x,y).
%e 1,
%e 0, 1,
%e 1, 0, 1,
%e 1, 0, 0, 1,
%e 2, 0, 1, 0, 1,
%e 1, 1, 1, 0, 0, 1,
%e 3, 0, 3, 0, 1, 0, 1,
%e 2, 1, 1, 2, 1, 0, 0, 1,
%e 5, 0, 5, 0, 4, 0, 1, 0, 1,
%e 3, 2, 3, 2, 1, 3, 1, 0, 0, 1
%e There are eight palindromic compositions of 6: T(6,0)=3 because we have: 6, 3+3, 2+2+2. T(6,2)=3 because we have: 1+4+1, 2+1+1+2, 1+2+2+1. T(6,4)=1 because we have: 1+1+2+1+1. T(6,6)=1 because we have: 1+1+1+1+1+1.
%p b:= proc(n) option remember; `if`(n=0, 1, expand(
%p add(b(n-j)*`if`(j=1, x^2, 1), j=1..n)))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))
%p (add(b(i)*`if`(n-2*i=1, x, 1), i=0..n/2)):
%p seq(T(n), n=0..30); # _Alois P. Heinz_, Mar 21 2014
%t nn=15;Table[Take[CoefficientList[Series[((1+x)*(1-x+x^2+x*y-x^2*y))/(1-x^2-x^4-x^2*y^2+x^4*y^2),{x,0,nn}],{x,y}][[n]],n],{n,1,nn}]//Grid
%K nonn,tabl
%O 0,11
%A _Geoffrey Critzer_, Mar 20 2014