login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A239250
Number of nX2 0..4 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it, modulo 5
1
13, 142, 1440, 14685, 150265, 1536541, 15708373, 160597823, 1641932577, 16786876051, 171626395117, 1754681817378, 17939597892019, 183411695776421, 1875173019958413, 19171481102053119, 196006279918074880
OFFSET
1,1
COMMENTS
Column 2 of A239256
LINKS
FORMULA
Empirical: a(n) = 16*a(n-1) -78*a(n-2) +264*a(n-3) -870*a(n-4) +1596*a(n-5) -52*a(n-6) -7238*a(n-7) +36698*a(n-8) -130198*a(n-9) +247568*a(n-10) -332087*a(n-11) +481080*a(n-12) +81284*a(n-13) -1582141*a(n-14) +1105684*a(n-15) +830880*a(n-16) -102044*a(n-17) -849619*a(n-18) -1884476*a(n-19) +1023696*a(n-20) +3161818*a(n-21) -2161900*a(n-22) -2172976*a(n-23) +3526016*a(n-24) -1687296*a(n-25)
EXAMPLE
Some solutions for n=5
..2..0....3..2....0..0....0..0....0..2....2..2....3..2....4..2....2..0....3..0
..0..4....2..1....3..2....0..3....0..4....2..1....3..0....3..0....4..2....0..2
..2..1....2..2....0..0....4..2....2..1....3..2....4..4....2..4....4..1....2..0
..3..2....2..2....3..2....4..3....2..0....2..2....4..4....3..1....0..3....4..2
..4..4....2..0....0..4....0..3....4..2....2..2....4..2....2..4....2..1....2..1
CROSSREFS
Sequence in context: A045742 A122011 A221103 * A029483 A266806 A015672
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 13 2014
STATUS
approved