Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 25 2015 17:05:48
%S 1,8,216,1000,2744,8000,13824,74088,125000,216000,512000,1000000,
%T 1061208,2000376,2299968,2744000,4741632,5832000,8000000,8242408,
%U 8489664,9261000,10941048,12812904,13824000,14886936,16003008,19683000,34012224,40001688,42144192
%N Cubes that are divisible by each of their nonzero digits.
%C Intersection of A000578 and A002796.
%H Lars Blomberg, <a href="/A239222/b239222.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A239221^(n)^3. - _Michel Marcus_, Mar 19 2014
%e 74088 is in the sequence because 74088 is divisible by 4, 7 and 8.
%t dedQ[n_]:=And@@Divisible[n,Select[IntegerDigits[n],#>0&]]; Select[ Range[ 400]^3, dedQ] (* _Harvey P. Dale_, Apr 25 2015 *)
%o (PARI) isOK(n) = my(v=vecsort(digits(n^3), , 8)); for(i=1+(v[1]==0), #v, if(n^3%v[i], return(0))); 1
%o s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n^3))); s
%Y Cf. A239219, A239220, A239221.
%Y Cf. A000578, A002796.
%K nonn,base
%O 1,2
%A _Colin Barker_, Mar 12 2014