login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239202 Multiplicative order of phi(n) modulo n when gcd(phi(n),n)=1. 1

%I

%S 1,1,2,2,2,2,2,4,2,2,2,2,2,10,6,2,2,2,2,8,2,2,2,12,2,22,2,2,15,2,2,4,

%T 28,2,12,36,2,2,2,2,2,2,44,48,20,2,2,18,2,2,46,6,28,2,2,2,52,22,2,2,2,

%U 58,2,2,18,80,2,2,2,2,45,2,70,28,6,48,2,2,2

%N Multiplicative order of phi(n) modulo n when gcd(phi(n),n)=1.

%H Giovanni Resta, <a href="/A239202/b239202.txt">Table of n, a(n) for n = 1..10000</a>

%e For n = 8: the 8th entry of A003277 is 15, and phi(15) = 8 has multiplicative order 4 modulo 15, so a(8) = 4.

%t MultiplicativeOrder[EulerPhi[#], #] & /@ Select[Range[1000], GCD[#, EulerPhi[#]] == 1 &]

%o (PARI) lista(nn) = {for(n=1, nn, my(ephi = eulerphi(n)); if (gcd(ephi, n) == 1, print1(znorder(Mod(ephi, n)), ", ")););} \\ _Michel Marcus_, Feb 09 2015

%Y Indexed by A003277.

%K nonn

%O 1,3

%A _Alexander Gruber_, Mar 12 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 23:56 EDT 2020. Contains 335484 sequences. (Running on oeis4.)