login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ballot sequences of length n with exactly 7 fixed points.
2

%I #13 Feb 06 2017 18:08:07

%S 0,0,0,0,0,0,0,1,1,3,9,29,99,357,1351,5342,21983,93823,414198,1886424,

%T 8846390,42628782,210773592,1067599984,5533263752,29307314408,

%U 158484944416,874103230896,4913196556800,28120097476640,163770757573776,969858742317600

%N Number of ballot sequences of length n with exactly 7 fixed points.

%C The fixed points are in the first 7 positions.

%C Also the number of standard Young tableaux with n cells such that the first column contains 1, 2, ..., 7, but not 8. An alternate definition uses the first row.

%H Joerg Arndt and Alois P. Heinz, <a href="/A239118/b239118.txt">Table of n, a(n) for n = 0..800</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%F See Maple program.

%F Recurrence (for n>=9): (n-8)*(n^7 - 36*n^6 + 706*n^5 - 13080*n^4 + 177169*n^3 - 1264884*n^2 + 3776364*n - 9605520)*a(n) = (n^8 - 44*n^7 + 802*n^6 - 12104*n^5 + 206449*n^4 - 2516636*n^3 + 16735788*n^2 - 68051376*n + 170709120)*a(n-1) + (n-9)*(n-7)*(n^7 - 29*n^6 + 511*n^5 - 10055*n^4 + 131224*n^3 - 805316*n^2 + 1729104*n - 6929280)*a(n-2). - _Vaclav Kotesovec_, Mar 11 2014

%F a(n) ~ sqrt(2)/11520 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1+7/(24*sqrt(n))). - _Vaclav Kotesovec_, Mar 11 2014

%e a(7) = 1: [1,2,3,4,5,6,7].

%e a(8) = 1: [1,2,3,4,5,6,7,1].

%e a(9) = 3: [1,2,3,4,5,6,7,1,1], [1,2,3,4,5,6,7,1,2], [1,2,3,4,5,6,7,1,8].

%e a(10) = 9: [1,2,3,4,5,6,7,1,1,1], [1,2,3,4,5,6,7,1,1,2], [1,2,3,4,5,6,7,1,1,8], [1,2,3,4,5,6,7,1,2,1], [1,2,3,4,5,6,7,1,2,3], [1,2,3,4,5,6,7,1,2,8], [1,2,3,4,5,6,7,1,8,1], [1,2,3,4,5,6,7,1,8,2], [1,2,3,4,5,6,7,1,8,9].

%p b:= proc(n) option remember; `if`(n<4, [1, 1, 3, 9][n+1],

%p ((41*n^2 +82925*n -562776)*b(n-1)

%p +(174*n^3 +63287*n^2 -447840*n +352440) *b(n-2)

%p +(133*n^3 -81472*n^2 +363510*n -267096) *b(n-3)

%p -(n-4)*(30661*n^2 -93002*n -90720) *b(n-4))/

%p (174*n^2+31449*n-246768))

%p end:

%p a:=n-> `if`(n<7, 0, b(n-7)):

%p seq(a(n), n=0..40);

%t b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 7, 1, b[n - 8, {2, 1, 1, 1, 1, 1, 1}]]; a[n_ /; n < 7] = 0; Table[ Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* _Jean-François Alcover_, Feb 06 2015, after Maple *)

%Y Column k=7 of A238802.

%K nonn,easy

%O 0,10

%A _Joerg Arndt_ and _Alois P. Heinz_, Mar 10 2014