Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Sep 22 2015 11:31:28
%S 4,10,12,15,16,18,28,39,40,52,58,63,69,72,82,87,93,100,106,120,123,
%T 126,128,138,144,186,195,212,213,214,222,225,249,263,273,274,282,286,
%U 292,294,313,321,322,339,347,375,381,386,388,400,402,426,432,436,448,454
%N Numbers n such that the equation Sd(n^k) = Sd(k^n) is satisfied for a k < n, where Sd(x) is the sum of the digits of x.
%C Obviously if k=n then Sd(n^k)=Sd(k^n). The sequence lists the numbers n whose minimum k that satisfies the equation is less than n.
%H Paolo P. Lava, <a href="/A239055/b239055.txt">Table of n, a(n) for n = 1..100</a>
%e For n = 16 the minimum k is 14. In fact 16^14 = 72057594037927936 and the sum of its digits is 85 while 14^16 = 2177953337809371136 and the sum of its digits is, again, 85.
%p S:=proc(s) local w,j; w:=convert(s,base,10); sum(w[j],j=1..nops(w)); end:
%p P:=proc(q) local k,n; for n from 1 to q do k:=0;
%p while S(n^k)<>S(k^n) do k:=k+1; od; if k<n then print(n); fi; od;
%p end: P(10^5);
%t Select[Range@ 454, AnyTrue[Range[# - 1], Function[x, Total@ IntegerDigits[#^x] == Total@ IntegerDigits[x^#]]] &] (* _Michael De Vlieger_, Sep 22 2015, Version 10 *)
%o (PARI) isok(n) = {for (k=1, n-1, if (sumdigits(n^k)==sumdigits(k^n), return (1)););} \\ _Michel Marcus_, Sep 22 2015
%Y Cf. A007953.
%K nonn,base
%O 1,1
%A _Paolo P. Lava_, Apr 02 2014