%I #4 Mar 09 2014 06:09:19
%S 8,64,428,2195,9319,33699,107611,311585,833304,2086074,4936712,
%T 11126665,24022753,49913047,100179401,194844297,368222528,677728244,
%U 1217319704,2137637135,3675638019,6197499195,10259782783,16695406105,26732874536
%N Number of 7Xn 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3
%C Row 7 of A239030
%H R. H. Hardin, <a href="/A239034/b239034.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/1036800)*n^12 - (1961/39916800)*n^11 + (13339/7257600)*n^10 - (30521/725760)*n^9 + (583409/806400)*n^8 - (400873/44800)*n^7 + (86137751/1036800)*n^6 - (407381983/725760)*n^5 + (4957467353/1814400)*n^4 - (8367100109/907200)*n^3 + (515324983/25200)*n^2 - (185067023/6930)*n + 15601 for n>3
%e Some solutions for n=5
%e ..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
%e ..2..0..0..0..0....1..2..2..0..0....1..2..2..0..0....2..0..0..0..0
%e ..1..0..0..2..2....2..1..1..2..2....2..1..1..2..2....1..2..2..0..0
%e ..2..0..0..1..2....1..0..0..2..2....1..2..2..1..2....2..1..1..2..2
%e ..1..0..2..2..0....2..0..0..1..1....2..1..1..0..0....1..2..2..1..1
%e ..1..0..2..1..0....2..0..0..1..1....2..0..0..0..0....1..2..2..0..0
%e ..2..0..1..2..0....1..0..0..0..0....1..2..2..0..1....2..0..1..2..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 09 2014