|
|
A239032
|
|
Number of 5 X n 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.
|
|
1
|
|
|
4, 16, 54, 149, 354, 757, 1495, 2773, 4888, 8258, 13456, 21249, 32642, 48927, 71737, 103105, 145528, 202036, 276266, 372541, 495954, 652457, 848955, 1093405, 1394920, 1763878, 2212036, 2752649, 3400594, 4172499, 5086877, 6164265, 7427368, 8901208
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = (1/144)*n^6 - (17/240)*n^5 + (169/144)*n^4 - (81/16)*n^3 + (1463/72)*n^2 - (1001/30)*n + 25 for n>1.
Conjectures from Colin Barker, Oct 25 2018: (Start)
G.f.: x*(4 - 12*x + 26*x^2 - 33*x^3 + 25*x^4 - 6*x^5 - 3*x^6 + 4*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
|
|
EXAMPLE
|
Some solutions for n=5:
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..2..0..0..0..0....2..0..0..0..0....1..0..2..2..0....2..0..0..0..0
..1..0..2..2..0....1..0..0..2..2....2..0..1..1..0....1..0..0..0..2
..2..0..1..1..0....1..2..2..1..2....2..0..0..0..0....1..2..2..0..1
..1..0..0..0..0....2..1..1..0..0....1..2..2..0..0....2..1..1..0..2
|
|
CROSSREFS
|
Row 5 of A239030.
Sequence in context: A293884 A121159 A358232 * A254823 A134968 A238419
Adjacent sequences: A239029 A239030 A239031 * A239033 A239034 A239035
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 09 2014
|
|
STATUS
|
approved
|
|
|
|