login
Decimal expansion of the volume of a rhombic dodecahedron with edges of unit length.
0

%I #20 Aug 21 2023 12:13:20

%S 3,0,7,9,2,0,1,4,3,5,6,7,8,0,0,4,0,7,7,3,8,2,1,2,6,8,2,9,3,4,3,7,7,3,

%T 0,9,6,7,8,7,2,0,9,3,4,0,1,0,7,3,4,3,3,3,8,7,6,5,8,7,9,0,7,4,5,8,1,2,

%U 1,4,2,5,2,2,8,2,3,1,1,1,7,7,0,3,3

%N Decimal expansion of the volume of a rhombic dodecahedron with edges of unit length.

%C An algebraic number of degree 2 and denominator 9; minimal polynomial 27*x^2 - 256. - _Charles R Greathouse IV_, Apr 20 2016

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RhombicDodecahedron.html">Rhombic Dodecahedron</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Rhombic_dodecahedron">Rhombic dodecahedron</a>.

%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>

%F Equals 16*sqrt(3)/9.

%F V = a^3*16*sqrt(3)/9 with a = 1.

%e 3.07920143567800407738212682934377309678720934010734333876587907...

%p Digits:=100; evalf(16*sqrt(3)/9); # _Wesley Ivan Hurt_, Mar 10 2014

%t RealDigits[16/Sqrt[27], 10, 85][[1]] (* _Indranil Ghosh_, Mar 15 2017 *)

%o (PARI) 16/sqrt(27) \\ _Charles R Greathouse IV_, Apr 20 2016

%K nonn,cons

%O 1,1

%A _Philippe Deléham_, Mar 09 2014