login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4
8

%I #4 Mar 08 2014 08:48:27

%S 3,7,7,15,41,15,31,203,203,31,63,955,2365,955,63,127,4393,25601,25601,

%T 4393,127,255,20015,270671,638779,270671,20015,255,511,90841,2827709,

%U 15482441,15482441,2827709,90841,511,1023,411621,29422487,370847909

%N T(n,k)=Number of nXk 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4

%C Table starts

%C ....3.......7.........15............31...............63..................127

%C ....7......41........203...........955.............4393................20015

%C ...15.....203.......2365.........25601...........270671..............2827709

%C ...31.....955......25601........638779.........15482441............370847909

%C ...63....4393.....270671......15482441........860394281..........47194836429

%C ..127...20015....2827709.....370847909......47194836429........5929702056895

%C ..255...90841...29422487....8839918663....2576820346901......741313154055591

%C ..511..411621..305525459..210298050207..140374233864007....92478950275376419

%C .1023.1863915.3170576253.4998886061169.7641515368274447.11527212881627494067

%H R. H. Hardin, <a href="/A238997/b238997.txt">Table of n, a(n) for n = 1..180</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -2*a(n-2)

%F k=2: [order 9]

%F k=3: [order 35]

%e Some solutions for n=3 k=4

%e ..3..3..1..3....1..0..1..1....3..3..1..3....0..1..1..3....0..1..1..1

%e ..0..3..0..2....0..3..2..0....0..3..2..2....0..1..0..2....1..0..1..2

%e ..3..2..0..1....1..2..2..2....0..3..2..2....0..3..2..0....0..1..2..2

%Y Column 1 is A000225(n+1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Mar 08 2014