login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Zeroless 7-smooth numbers.
8

%I #40 Jan 28 2023 10:34:33

%S 1,2,3,4,5,6,7,8,9,12,14,15,16,18,21,24,25,27,28,32,35,36,42,45,48,49,

%T 54,56,63,64,72,75,81,84,96,98,112,125,126,128,135,144,147,162,168,

%U 175,189,192,196,216,224,225,243,245,252,256,288,294,315,324,336

%N Zeroless 7-smooth numbers.

%C A001221(a(n)) <= 3 since 10 cannot divide a(n).

%C It seems that this sequence is finite and contains 12615 terms. - _Daniel Mondot_, May 03 2022 and _Jianing Song_, Jan 28 2023

%H Daniel Mondot, <a href="/A238985/b238985.txt">Table of n, a(n) for n = 1..12615</a> (terms 1..10000 from Charles R Greathouse IV)

%F A086299(a(n)) * A168046(a(n)) = 1.

%e a(12615) = 2^25 * 3^227 * 7^28.

%o (Haskell)

%o import Data.Set (singleton, deleteFindMin, fromList, union)

%o a238985 n = a238985_list !! (n-1)

%o a238985_list = filter ((== 1) . a168046) $ f $ singleton 1 where

%o f s = x : f (s' `union` fromList

%o (filter ((> 0) . (`mod` 10)) $ map (* x) [2,3,5,7]))

%o where (x, s') = deleteFindMin s

%o (PARI) zf(n)=vecmin(digits(n))

%o list(lim)=my(v=List(),t,t1); for(e=0,log(lim+1)\log(7), t1=7^e; for(f=0,log(lim\t1+1)\log(3), t=t1*3^f; while(t<=lim, if(zf(t), listput(v, t)); t<<=1)); for(f=0,log(lim\t1+1)\log(5), t=t1*5^f; while(t<=lim, if(zf(t), listput(v, t)); t*=3))); Set(v)

%Y Cf. A168046, intersection of A002473 and A052382.

%Y A238938, A238939, A238940, A195948, A238936, A195908 are proper subsequences.

%Y Cf. A059405 (subsequence), A350180 through A350187.

%K nonn,base

%O 1,2

%A _Charles R Greathouse IV_ and _Reinhard Zumkeller_, Mar 07 2014

%E Keyword:fini and keyword:full removed by _Jianing Song_, Jan 28 2023 as finiteness is only conjectured.