login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Powers of 3 without the digit '0' in their decimal expansion.
17

%I #20 Oct 07 2023 21:38:16

%S 1,3,9,27,81,243,729,2187,6561,19683,177147,531441,1594323,4782969,

%T 1162261467,94143178827,282429536481,2541865828329,7625597484987,

%U 22876792454961,617673396283947,16677181699666569,278128389443693511257285776231761

%N Powers of 3 without the digit '0' in their decimal expansion.

%C Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

%H M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS wiki, Mar 07 2014.

%F a(n) = 3^A030700(n).

%t Select[3^Range[0,100],DigitCount[#,10,0]==0&] (* _Paolo Xausa_, Oct 07 2023 *)

%o (PARI) for(n=0,99,vecmin(digits(3^n))&& print1(3^n","))

%Y For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.

%Y For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.

%Y For other related sequences, see A052382, A027870, A102483, A103663.

%K nonn,base

%O 1,2

%A _M. F. Hasler_, Mar 07 2014

%E Keyword:fini removed by _Jianing Song_, Jan 28 2023 as finiteness is only conjectured.