login
Powers of 3 without the digit '0' in their decimal expansion.
17

%I #20 Oct 07 2023 21:38:16

%S 1,3,9,27,81,243,729,2187,6561,19683,177147,531441,1594323,4782969,

%T 1162261467,94143178827,282429536481,2541865828329,7625597484987,

%U 22876792454961,617673396283947,16677181699666569,278128389443693511257285776231761

%N Powers of 3 without the digit '0' in their decimal expansion.

%C Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

%H M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS wiki, Mar 07 2014.

%F a(n) = 3^A030700(n).

%t Select[3^Range[0,100],DigitCount[#,10,0]==0&] (* _Paolo Xausa_, Oct 07 2023 *)

%o (PARI) for(n=0,99,vecmin(digits(3^n))&& print1(3^n","))

%Y For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.

%Y For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.

%Y For other related sequences, see A052382, A027870, A102483, A103663.

%K nonn,base

%O 1,2

%A _M. F. Hasler_, Mar 07 2014

%E Keyword:fini removed by _Jianing Song_, Jan 28 2023 as finiteness is only conjectured.