login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238912
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to all horizontal neighbors or equal to all vertical neighbors, and new values 0..2 introduced in row major order
7
3, 9, 9, 54, 41, 54, 261, 486, 486, 261, 1341, 4287, 17496, 4287, 1341, 6768, 41165, 408726, 408726, 41165, 6768, 34335, 385632, 10789686, 22778013, 10789686, 385632, 34335, 173925, 3638773, 274834944, 1474369337, 1474369337, 274834944, 3638773
OFFSET
1,1
COMMENTS
Table starts
.......3..........9..............54.................261....................1341
.......9.........41.............486................4287...................41165
......54........486...........17496..............408726................10789686
.....261.......4287..........408726............22778013..............1474369337
....1341......41165........10789686..........1474369337............241302194385
....6768.....385632.......274834944.........91433307852..........37515316223070
...34335....3638773......7073353350.......5739848041311........5917999098852871
..173925...34262775....181499433750.....359075051396597......929709624020566839
..881406..322817734...4661259221016...22485455035768752...146227628520093446270
.4466169.3040984385.119679993219366.1407650415969195223.22991463214552411818739
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) +6*a(n-2) -3*a(n-3)
k=2: [order 10]
k=3: a(n) = 22*a(n-1) +120*a(n-2) -678*a(n-3) +522*a(n-4) +432*a(n-5) -81*a(n-6)
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..2....0..1..0..0..1....0..1..0..1..0....0..1..0..1..0
..1..2..1..2..1....1..0..2..2..0....1..2..1..0..1....2..0..2..0..2
..0..2..0..2..0....0..1..2..1..0....0..2..1..0..2....0..2..1..1..2
..2..1..2..1..2....1..0..1..0..1....2..1..2..2..1....2..1..0..2..0
CROSSREFS
Sequence in context: A203558 A223653 A351929 * A038227 A080292 A273893
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 07 2014
STATUS
approved