The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238894 Irregular triangle of the number of times that sums +- 3 +- 5 +- 7 +- 11 +-...+- prime(2n+1) equal an even number in the range -d to d, where d = 3 + 5 + 7 + 11 +...+ prime(2n+1). 2
 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,53 COMMENTS Because the value at odd numbers is zero, we count only the values at even numbers. This sequence, a generalization of A083309, is more interesting plotted. The rows of the irregular triangle begin at positions 1, 10, 37, 94, 193, 352, 589, 916, 1355, 1922, 2633, 3506, 4565, 5828, and 7307. having lengths 9, 27, 57, 99, 159, 237, 327, 439, 567, 711, 873, 1059, 1263, 1479, and 1719. LINKS T. D. Noe, Extremal Sums of Sequences EXAMPLE The first row of the irregular triangle is {1, 0, 0, 1, 0, 1, 0, 0, 1} because the sums +- 3 +- 5 form the numbers -8, -2, 2, and 8. The odd numbers are suppressed. MATHEMATICA nMax = 10; d = {1, 0, 0, 1}; t = {}; Do[p = Prime[n + 1]; d = PadLeft[d, Length[d] + p] + PadRight[d, Length[d] + p]; If[0 == Mod[n, 2], AppendTo[t, d]], {n, 2, nMax}]; Flatten[t] CROSSREFS Cf. A083309. Sequence in context: A253607 A212179 A257023 * A054740 A272947 A177740 Adjacent sequences:  A238891 A238892 A238893 * A238895 A238896 A238897 KEYWORD nonn,tabf AUTHOR T. D. Noe, Mar 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 03:58 EDT 2020. Contains 333238 sequences. (Running on oeis4.)